Log in
CHAPMAN's research into emotionally durable design has radically shifted the values and practices of global businesses, helping them to cut waste and to enhance product, material and brand value. Through publications, exhibitions, master-classes and films, this research has transformed understanding of sustainable design in professional (Puma, Sony), policy (House of Lords, UN) and cultural (Design Museum, New Scientist) settings, propelling the field beyond its focus on energy and materials, towards deeper engagements that link psychosocial phenomena with ideas about consumption and waste. Furthermore, it has contributed to public debate and policy with the effect that the term `emotional durability' has now entered the international design lexicon, providing valuable shorthand for complex phenomena influencing product longevity.
This research within the Unit was in collaboration with TT Electronics plc. to develop a novel low-ohmic thin film resistor for precision current measurement in power management applications. TT Electronics plc. is an international company with 6,000 employees worldwide and annual sales of over £500 million to multinational clients such as BMW, Daimler and BAE Systems. Since 2008 the benefits of this research to TT Electronics plc. include:
The A350-XWB is the first Airbus airliner to have composite wings, thereby reducing structural weight compared with the current generation of metallic wings. With over 700 orders for the aircraft, the company has placed great emphasis on the need to maximise performance benefits whilst mitigating risk associated with manufacture of the all-new wing. The Bath Composites Research Unit has supplied underpinning research to:
(1) Develop an algorithm that has been used to design the composite wing skins for optimised performance;
(2) Analyse the laminate consolidation process for the wing spars.
The impact of (1) is a direct saving of 1.0 tonne of fuel per typical flight compared with current metallic skins. This represents a total fuel saving of around 40,000 tonnes, over the design life of each aircraft. The impact of (2) is the achievement of satisfactory part quality for current production rates of spars valued at £1M each when equipped.
BRITEST is a global leader in the development of innovative process solutions for the chemical processing sector with > £500m of value being realized since 2008. Research in Manchester (1997-2000) generated a set of novel tools and methodologies which analyse chemical processes to identify where and how process improvements could be made. BRITEST was established in 2001 as a not-for-profit company to manage the technology transfer and effective deployment of these tools and methodologies into industry. Manchester holds the IP arising from the underpinning research and has granted an exclusive license to BRITEST for use and exploitation of the toolkit.
Research work in the University of Cambridge Department of Engineering (DoEng) created a formal methodology for eco-design, based on lifecycle thinking that can be implemented during product design. This methodology and supporting reference data have been commercialised by DoEng spin-off company, Granta Design Limited, within Granta's software solutions: for engineering and product design in industry, integrating with the CAD environment; and for materials education. These products are incorporated in software suites that have over 200,000 users. Industry case studies demonstrate their value to end customers.
Research conducted since July 2008 by the University of East London in collaboration with Control Techniques Dynamics (CTD), a leading manufacturer of Permanent Magnet Synchronous Motors (PMSMs), has led to the development of a software tool called the PMSM analyser. This tool has helped CTD to improve its motor design methodology by incorporating electromagnetic, thermal and cost models, together with genetic algorithms. In turn, the design optimisation allowed CTD to enhance motor performance and reduce manufacturing time by 30-40%, leading to an increase of 20% in company sales between 2008 and 2013. During the same period the company was able to cut materials usage by 15%.
Research at the University of Bradford has enabled many major vehicle and brake manufacturers to improve the design of their brakes and braking systems to increase customer satisfaction and sales, and reduce costs. Methods have been developed to predict the thermo-mechanical and dynamic performance of brakes and provide design improvements. Durable solutions have been developed for noisy brakes, which have reduced warranty costs for approximately ten international collaborating companies including Bentley, where a squeal noise from the front brakes of a new vehicle had prevented it from being released for production. Our research has been embedded into short courses, which have trained over 250 engineers since 2008 and is incorporated into Jaguar Land Rover's (JLR) professional training.
Compressors developed at the Department of Engineering Science have formed a key component of the cryocoolers used to cool the infra-red sensors on satellites. Their low mass has trimmed almost $250k from the cost of individual satellite missions. Sixty seven have been sold to date, with sales totalling £2.8M between January 2008 and July 2013; three units are currently in Earth orbit with another nine planned to follow in 2014. A specialised version has been developed to achieve extremely low temperatures, with prototypes already built for the Mid Infra-Red Instrument (MIRI) that will form part of the James Webb Space Telescope.
A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.
University of Bradford research has enabled a material manufacturing company, Armacell, to reuse up to 95% of its production waste to produce new, high-value acoustic products with up to 50% better acoustic performance than any competition products of similar size. We protected the developed IP through several international patents and set up a spin-off company, Acoutechs Ltd, to explore this technology commercially. These materials are now used to reduce noise levels below the recommended limits and to improve the general acoustic quality of spaces at home and work for the benefit of public health. The products generate an annual turnover of more than €4 million for Armacell and prevent more than 500 tonnes of plastic waste from going into landfill annually.