Log in
International and national political negotiations and public debates about climate change mitigation policies can only progress with accurate and timely updates about the global carbon budget. Annual carbon updates have been supplied over many years, as a result of our work. The "Global Carbon Project" (GCP) has become the definitive source on carbon budgets for political and policy processes dealing with climate change mitigation and the GCP draws heavily on the School's work on the ocean carbon cycle, including ocean iron fertilisation, and its relevance to the contemporary global carbon budget. This is evidenced by its citation and influence on national (e.g. UK, Germany, Australia, USA, Sweden and Canada) and international (e.g. UN Framework Convention on Climate Change) deliberations.
In the REF impact period, our research on carbon-rich tropical peat swamp forests in Indonesia has been used to:
Carbon dioxide sequestration is the process by which pressured CO2 is injected into a storage space within the Earth rather than released into the atmosphere. It is one of the major ways that carbon dioxide emissions can be controlled.
Research since 2004 by applied mathematicians at the University of Cambridge into the many different effects that might be encountered during this process has had considerable impact on government and industry groups in determining how the field is viewed and how it should and might be industrially developed. The work played a major role in the CO2CRC conferences and was subsequently reported to the Australian Government by the CO2CRC chair and organisers.
Our research on the economics of low carbon cities has impacted on energy and low carbon strategies and on investment decision-making in major UK cities including Leeds, Sheffield and Birmingham. It has also influenced guidance issued to local authorities by the Committee on Climate Change and the Department for Communities and Local Government, and has helped to embed strategies and targets for green growth in the next five-year plan for China. The research was voted one of the most transformative ideas to be presented at the UN climate negotiations in Durban in December 2011, and the approach is now being replicated in cities in India, Peru, Malaysia and Indonesia.
Research in the UoA developed a methodology for Carbon Calculations over the Life Cycle of Industrial Activities (CCaLC), providing `cradle to grave' carbon footprint estimates for commercial products. The methodology was embedded in a set of software tools designed to be used by non- experts, allowing companies to perform carbon footprinting in-house. The software is free to download, currently with 3300 users in more than 70 countries. The methodology and software tools have been endorsed by BERR (now BIS), DEFRA and the World Bank, and used widely by industry, across a range of sectors, to reduce carbon footprints of their products. This has resulted in significant environmental and socio-economic benefits, including estimated climate change mitigation gains in excess of £450m.
Vincent Gauci and The Open University (OU) Ecosystems Research Group have demonstrated human influences over exchanges of carbon within vulnerable, temperate and tropical wetland ecosystems, which are the largest source of the powerful greenhouse gas methane to the atmosphere. The group's work showing that acid rain pollution suppresses methane emissions from wetlands has influenced policy in the UK, particularly peatland restoration, where the group has had direct interaction with users. The group's work on carbon balance resulting from deforestation, drainage and fires in the carbon-rich Bornean peat swamp has also informed IPCC methodologies for carbon balance calculations in its 2013 Wetlands Supplement.
Impacts: I) Development of carbon credit certification schemes, including the expansion by the Gold Standard Foundation into land-use and forestry and the creation of the Natural Forest Standard by Ecometrica Ltd (both in 2012). II) Enhanced cross-sector collaboration for the quantification of forest-loss risks and implications for financing risks, through the 2011 creation of a Forest Finance Risk Network (FFRN).
Significance and reach: The Gold Standard Foundation represents nine forestry projects worldwide (benefiting >8,500 people) and over 1.8million ha. of Brazilian land is managed through two Natural Forest Standard projects. The FFRN connects 80 member organizations globally.
Underpinned by: Research into carbon emissions associated with forest-loss, undertaken at the University of Edinburgh (2005 onwards).
Since 2005 the Agriculture and Environment Research Unit has undertaken an extensive programme of research related to mitigating the climate change impacts arising from agricultural land management policies and practices. The research findings that identified the impact on climate change of various policies, schemes and farming initiatives have been instrumental since 2008 in providing UK policy makers, farmers and their advisors with data and tools that helped to formulate improved climate change mitigation policies. They also contributed to the development of key guidance materials that supported the implementation of these policies on the farm.
Research conducted at the Business School's Centre for Business and Climate Change since 2008 has:
This impact has been of international significance, reaching international standard setters, investors, corporations and other stakeholders. For example, 26 multinational companies paid to participate in carbon benchmarks conducted by a spin-out company created by the Centre and based on methods it developed. 90 global investors with US$7tr of assets have launched a shareholder action initiative inspired by the Centre's research. The world's leading carbon accounting standards body has adopted a conceptual framework developed by the Centre.
The research reported in this case study demonstrates that in order to achieve a carbon neutral future whole life building carbon footprinting should be undertaken by using Life Cycle Assessments (LCA) at all stages of design, construction and throughout the lifespan of buildings. Practical tools in this area are few, and the award winning research projects reported here address this need and have had impacts in the following areas; firstly, through their direct applications in building procurement and management, secondly through changes to national standards and specifications and thus professional practice, and thirdly through enhanced public awareness at local, national and international levels.