Similar case studies

REF impact found 77 Case Studies

Currently displayed text from case study:

Innovative acoustic material enables economic growth while reducing waste and noise pollution

Summary of the impact

University of Bradford research has enabled a material manufacturing company, Armacell, to reuse up to 95% of its production waste to produce new, high-value acoustic products with up to 50% better acoustic performance than any competition products of similar size. We protected the developed IP through several international patents and set up a spin-off company, Acoutechs Ltd, to explore this technology commercially. These materials are now used to reduce noise levels below the recommended limits and to improve the general acoustic quality of spaces at home and work for the benefit of public health. The products generate an annual turnover of more than €4 million for Armacell and prevent more than 500 tonnes of plastic waste from going into landfill annually.

Submitting Institution

University of Bradford

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering, Interdisciplinary Engineering

Novel Offset Deformable Barrier leading to changes in European Standards and improved vehicular safety

Summary of the impact

Research into variable mechanical energy absorption, using Finite Element (FE) modelling and analysis, funded by Cellbond Ltd., led to a design specification for an Offset Deformable Barrier (ODB). Such barriers are used within the motor manufacturing industry to test vehicular safety. Based on the findings of our research, the barrier used in car crash tests has been redesigned. The design specification for the barrier has been adopted by the European New Car Assessment Programme (EuroNCAP). All newly designed cars are tested with this type of barrier before they enter production. The use of FE modelling and virtual crash testing allows barriers to be designed with particular properties and for the crash testing cycle to be shortened.

Submitting Institution

Anglia Ruskin University

Unit of Assessment

General Engineering

Summary Impact Type

Political

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Automotive Engineering, Materials Engineering

Enhancing industrial capability to innovate in vehicle design, for commercial, societal and environmental benefit

Summary of the impact

Vehicle and mobility design research carried out at the Royal College of Art (RCA) since 1993 has resulted in industrial innovation in vehicles and transport, both nationally and internationally, enhancing industry's ability to provide commercial, societal and environmental benefits between 2008 and 2013. The areas in which we are claiming impact include accessible, user-centred transport (Impact 1); future visions of public service vehicles and systems (Impact 2); and innovation in vehicle design for changing technologies (Impact 3). These impacts are produced through design and consultancy. Corroboration of impact takes the form of public records of achievements, and authentication by manufacturers.

Submitting Institution

Royal College of Art

Unit of Assessment

Art and Design: History, Practice and Theory

Summary Impact Type

Societal

Research Subject Area(s)

Information and Computing Sciences: Information Systems
Engineering: Civil Engineering

UOA15-09: Compact, lightweight compressors for space applications

Summary of the impact

Compressors developed at the Department of Engineering Science have formed a key component of the cryocoolers used to cool the infra-red sensors on satellites. Their low mass has trimmed almost $250k from the cost of individual satellite missions. Sixty seven have been sold to date, with sales totalling £2.8M between January 2008 and July 2013; three units are currently in Earth orbit with another nine planned to follow in 2014. A specialised version has been developed to achieve extremely low temperatures, with prototypes already built for the Mid Infra-Red Instrument (MIRI) that will form part of the James Webb Space Telescope.

Submitting Institution

University of Oxford

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

Drivetrain noise and vibration refinement for automotive applications

Summary of the impact

Reducing vehicle noise and vibration is a key quality objective in the automotive industry. Historically, the approach has been costly palliation late in the manufacturing process; now a new approach applied earlier in the vehicle development cycle has been devised by Loughborough University and Ford and implemented at Ford that has led to savings of $7 per vehicle with respect to clutch in-cycle vibration (whoop). Ford has reported savings of $10M over 5 years, whilst reductions in transmission rattle have led to 5% fuel efficiency gains [5.1]. Ford has made an investment of £240M in its engine and transmission work at Bridgend, which includes aspects of work reported here and has created 600 new jobs [5.2].

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Technology: Communications Technologies

Enhanced Performance of Permanent Magnet Synchronous Motors, Reduced Manufacturing Material and Time to Production

Summary of the impact

Research conducted since July 2008 by the University of East London in collaboration with Control Techniques Dynamics (CTD), a leading manufacturer of Permanent Magnet Synchronous Motors (PMSMs), has led to the development of a software tool called the PMSM analyser. This tool has helped CTD to improve its motor design methodology by incorporating electromagnetic, thermal and cost models, together with genetic algorithms. In turn, the design optimisation allowed CTD to enhance motor performance and reduce manufacturing time by 30-40%, leading to an increase of 20% in company sales between 2008 and 2013. During the same period the company was able to cut materials usage by 15%.

Submitting Institution

University of East London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

4. Rolls-Royce University Technology Centre on Vibration

Summary of the impact

Cost savings in the order of £130M over the REF period have been achieved by Rolls-Royce through the improvement of engine reliability of civil and military aero-engines, industrial machines used for electricity generation and gas/oil pumping applications through the use of techniques and processes developed by the Vibration University Technology Centre (UTC) at Imperial College London.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Electrical and Electronic Engineering, Mechanical Engineering, Interdisciplinary Engineering

Automated Design Analysis and Generation of Diagnostics

Summary of the impact

Automotive design analysis software based on qualitative reasoning research in the Advanced Reasoning Group at Aberystwyth is deployed at more than 200 automotive and aeronautic OEMs and Tier 1 suppliers world-wide. The software necessitates companies changing their process for performing design analysis, and companies are willing to do this because of the attendant benefits.

The major benefits of use of the software are early feedback on potential problems with the design of automotive systems, and improved safety of automotive designs. Related benefits are improved product time to market, and cost savings. A representative example of production savings of $2.5 million has been given for use of the software on a single product design, as well as Ford Motor Company's estimate of $20M per year saved in just their company.

Submitting Institution

Aberystwyth University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Economic

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics, Information Systems

Improving packaging machine design and manufacture for a reduced carbon footprint

Summary of the impact

Packaging is vital for sales and for product protection for all process industries, with the most widely used world-wide being board and film. For example, the grocery sector alone represents about 70% of the UK packaging market, with 10 million tonnes of packaging used each year.

Packaging materials are variable, which poses significant challenges in packaging machine design. A further challenge has arisen due to environmental legislation that requires the use of thinner, lighter weight materials. There is a need to meet these challenges since the size of the world market for packaging machinery is around €20bn, of which 2% is associated with the UK. Research at Bath has helped address these challenges in a number of inter-related areas:

  • Improved performance of an existing business: Research findings have enabled the creation of new tooling allowing lighter packaging material and reduced customer carbon footprint giving HayssenSandiacre incremental revenue in excess of $8M.
  • Improvement/changes in existing practices: Guidelines adopted and the provision of training has allowed AstraZeneca to report a 16% improvement in overall equipment effectiveness equating to savings of £1.1M pa.
  • New business activity: New test equipment, commercially available since 2008, and associated technical services have provided Smithers Pira and Hanatek with £200k of specialised test equipment sales.

Research has been undertaken in collaboration with industrial companies consisting mainly of SMEs, end users and research associations. Impact has been gained by embedding the results within the collaborating companies and by on-going use of the results by research associations.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Manufacturing Engineering, Materials Engineering

Design and manufacture of composite wing structures - optimising performance and improving process

Summary of the impact

The A350-XWB is the first Airbus airliner to have composite wings, thereby reducing structural weight compared with the current generation of metallic wings. With over 700 orders for the aircraft, the company has placed great emphasis on the need to maximise performance benefits whilst mitigating risk associated with manufacture of the all-new wing. The Bath Composites Research Unit has supplied underpinning research to:

(1) Develop an algorithm that has been used to design the composite wing skins for optimised performance;

(2) Analyse the laminate consolidation process for the wing spars.

The impact of (1) is a direct saving of 1.0 tonne of fuel per typical flight compared with current metallic skins. This represents a total fuel saving of around 40,000 tonnes, over the design life of each aircraft. The impact of (2) is the achievement of satisfactory part quality for current production rates of spars valued at £1M each when equipped.

Submitting Institution

University of Bath

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies