Log in
Research carried out by the University of Southampton has directly influenced the practice and behaviour of households, business, industry and government agencies. It has:
University of Huddersfield research into the microbial production and metabolism of polysaccharides has had a significant impact in two distinct areas. In the food and health care industry it has driven developments in the use of bacterial starter cultures, leading to the adoption of new techniques to produce fermented products with proven functionality. In the policy arena, in modelling gas production by microorganisms, it has made a major contribution to the safety case for the disposal of nuclear waste, highlighting the economic and environmental benefits of underground storage. In each instance the reach of the research's impact has been international with the biggest beneficiaries residing in Europe and North America.
An innovative deep borehole disposal (DBD) concept for radioactive waste, pioneered at the University of Sheffield, resulted in significant impact on geological disposal strategy with an international reach. In the USA, our work contributed to a change in geological disposal strategy, with our concept described by the Director of Sandia National Laboratory as a "legitimate and a viable alternative [to the mined, engineered repository model] worthy of deeper consideration" [S1]. The Presidential Blue Ribbon Commission report on America's Nuclear Future recommended that DBD be taken forward to a practical pilot demonstration, now funded by the US Department of Energy (DOE) [S2]. Sheffield's work on DBD influenced Sweden's regulators and Environmental Court to reconsider approval of a mined repository by SKB. Our work has impacted on the UK approach to waste management, with DBD now included in the Nuclear Decommissioning Authority (NDA) [S3] bid to accelerate the Government's Managing Radioactive Waste Safely programme.
The research groups of Professor Laurence Harwood and Dr Michael Hudson (now retired) at the University of Reading have developed new and highly selective extractants for spent and reprocessed nuclear fuels. These novel extractants remove specifically the components in nuclear waste that have the highest levels of long-term radioactivity. The extracted components (minor actinides) may subsequently be converted — "transmuted" — into elements with greatly reduced radioactivity. Storage times for high-level nuclear waste can thus be reduced by a factor of a thousand, typically from 300,000 to 300 years. This significant advance in the management of nuclear waste means that next-generation nuclear power production will be safer, more economical and more sustainable, as well as increasing the wider acceptance of nuclear power as a viable alternative to fossil fuels. The newly-developed extractants are now available commercially through TechnoComm Ltd.
UK and international government departments, agencies and the nuclear industry have benefitted from improved understanding of environmental radioactivity and the development of novel, in situ gamma spectroscopy by researchers at the Scottish Universities Environmental Research Centre (SUERC, University of Glasgow). The provision of advice and novel data has helped to develop management, monitoring, regulation and human dose assessments for authorised and accidental releases of radionuclides, and to build plans for geological disposal facilities for high and intermediate level radioactive waste.
Through strategic national roles Grimes and Lee have had a major impact on the expansion of the UKs nuclear R&D programme since 2000 and on directing Government policy in the nuclear sector. Their research led directly to appointments to influential positions including (Grimes) as Specialist Advisor Nuclear to the House of Lords Science and Technology Committee (HoLSTC) for their report on Nuclear R&D Capabilities and (Lee) as Deputy Chair of the Government Advisory Committee on Radioactive Waste Management (CoRWM), which has a major scrutiny and advice role to Government's £multi-billion Managing Radioactive Waste Safely (MRWS) programme reporting directly to the Energy Minister. Due to his unique insight in nuclear engineering Grimes is now Chief Scientific Adviser to the Foreign and Commonwealth Office.
The research of Prof Jim Frederickson and the Integrated Waste Systems Research group at The Open University (OU) has impacted industrial partners and government agencies in developing a sustainable approach to waste processes and treated products. In particular they have developed the biodegradability tests (DR4 and BM100/BMc) used extensively for the evaluation of Mechanical and Biological Treatment (MBT) waste plants, and also the Residual Biogas Potential (RBP) test for determining the stability of anaerobic digestates, which forms part of the BSI PAS110: 2010 specification. This work is a significant contribution to the development of sustainable waste management practices in the UK.
Carbon8 Systems (C8S) was founded on joint research between UCL and the University of Greenwich. The company has since developed a technology known as Accelerated Carbonation, which helps to reduce carbon dioxide (CO2) emissions by using carbon dioxide gas to treat waste materials and form artificial aggregate. In January 2013, C8S completed the first commercial plant for treating municipal solid waste incinerator (MSWI) fly ashes, designed to produce 1,000 tonnes per day of aggregate. Masonry products company Lignacite has also benefited commercially. It has used C8S's aggregate to develop an award-winning building block that captures more carbon dioxide than is emitted during its manufacture. Carbon8 Systems and its offshoot company Carbon8 Aggregates currently employ 11 people.
Wastes management represents a major global environmental challenge. In the early 2000s Defra recognised that the UK's emphasis needed to change from managing waste to preventing it arising, and that Local Authorities must be equipped to produce cost-effective waste reduction plans. To this end, WRAP (Waste and Resources Action Programme) financed a major Local Authority training programme involving the Centre for Sustainable Wastes Management (CSWM) due to its track record of research expertise. Evaluation of this training demonstrated that over 90% of 204 delegates (from 33% of Local Authorities) developed a deeper understanding of waste prevention and 41% consequently upgraded their plans, embedding sustainable practice into their organisations and reducing arisings. The ultimate impact of this has been to save Local Authorities money and reduce the amount of waste going to landfill.
The impact of the research at Loughborough University from 1999 to date has transformed informational processes in Leicestershire Police and has been adopted by other Police forces across the UK and internationally. Within Leicestershire it has led directly to [5.1]: