Log in
In partnership with the US company Nalco, the University's Surfactant & Colloid Group developed a new multifunctional technology (Clean n Cor) for the oil industry that both removes accumulated deposits at a metal surface (enabling "break-through" of corrosion inhibitor to the metal surface) and inhibits corrosion. Clean n Cor technology not only protects assets such as oil pipelines against corrosion but also maximises oil production through enhancing water injectivity (water flow per unit pressure drop). Since its launch in 2007, it is currently one of Nalco's fastest growing new technologies and is used at over 100 production locations worldwide.
Research in materials modelling by the Computational Science and Engineering Group (CSEG) is helping aerospace, defence and transport companies design advanced materials and new manufacturing processes. From lightweight components like aeroengine turbine blades to the control of magnetic fields to stabilise the next generation of International Space Station levitation experiments, CSEG is supporting innovations which have:
In the assessment period, CSEG collaborated closely with leading industries in steel-making (ArcelorMittal, Corus), primary aluminium (Dubal, Rusal, Norsk-Hydro, SAMI) and lightweight structural materials for transport and aerospace (European Space Agency, Rolls-Royce).
Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.
The adoption of hydrogen and fuel cell systems provides one solution to fossil fuel depletion, security of energy supplies and sustainability concerns. However, safety is a key technological barrier to the hydrogen economy. The technological impact of this case study is the adoption of research outcomes, from work undertaken by the Hydrogen Safety Engineering and Research centre (HySAFER), Built Environment Research Institute into international regulations, codes, and standards (namely Commission Regulation (EU) No.406/2010, and the international ISO/TR15916), and development of novel safety strategies, guidance, protocols, and engineering solutions supported by significant external research funding.
We have optimised aerospace structural designs and assessment methods through development and application of hybrid residual stress characterisation techniques. Our research results on bonded crack retarders have redirected industry development programmes on hybrid metal laminate material systems and been used to evaluate reinforced structural concepts for US Air Force wing and fuselage applications. Methods to assess and mitigate maintenance-induced damage have been developed and implemented based on our research. Our contour measurement technology has been transferred to the US Air Force, which now has the capability to perform measurements in-house and support work with both NASA and the US Navy.
Our research on semiconductor materials and devices has led to the establishment by e2v Technologies of a combined manufacturing, research and development facility within the School of Physics and Astronomy. We have adapted and transferred device simulation software to e2v, and have provided epitaxially-grown semiconductors and access to fabrication facilities which have been used in their manufacturing processes. Devices fabricated within the facility, which was opened in 2011, have generated sales of £7M for e2v. This initiative has also led to shifts in the investment priorities of e2v, and mitigated risks to the company arising from import restrictions associated with the US International Traffic in Arms Regulations (ITAR).
A new procedure for the measurement and characterisation of polycrystalline exchange bias systems has been developed which has impacted significantly the manufacture of computer hard drive read-heads by companies such as Seagate Inc and Western Digital Corp. The new measurement procedure has enabled a typical 40% increase in the thermal stability of the antiferromagnetic materials used in computer hard drive read heads. The procedure has also improved the manufacturing process of the read-heads giving increased material performance and has resulted in a ~25% improvement in the resolution of detecting a bit.
Semiconductor wafers are subject to damage from misaligned handling tools, leading to cracks. Most of these are benign, but a few propagate to cause silicon wafer breakage during high temperature processing, leading to losses in production time costing millions of dollars per year. Research in Durham showed that X-ray Diffraction Imaging can be used to identify which cracks will catastrophically fail. As a consequence, Jordan Valley UK Ltd has designed and already sold over £M [text removed for publication] worth of X-ray imaging tools to the semiconductor industry. The company identifies this product as being critical to its continuation, safeguarding more than 25 jobs, and growth over the past 2 years.
Research by Marianne Odlyha and her group at the Department of Biological Sciences, Birkbeck, University of London, has led to the development of minimally invasive analytical methods and portable tools (dosimeters) for assessing damage to historical artefacts. These dosimeters are now in use at locations around the world, including the Tate Gallery's store rooms, English Heritage properties (Apsley House) and museums in Ghent, Cracow and Mexico. Methods for assessing damage, and for mitigation of pollutant impact on objects in museum enclosures, have been disseminated to conservation professionals through workshops and training courses held across Europe. The assessment and prevention of damage is vital to conserve the cultural as well as the monetary value of artefacts.
Research on ester liquids (ELs) has proved they can be used in high-voltage (HV) transformers, bringing economic and safety advantages to the power industry and environmental benefits to society. Impact includes revisions to National Grid's oil policy recommending ester-filled HV transformers for use in London and the design and operation of the first 132kV "green" transformer (valued between £1m and £2m). The research has led directly to the creation of two international standards for professionals in global power utilities specifying the use of ELs in transformers. These developments have contributed directly to Manchester SME M&I Materials increasing sales from £15m (2008) to £29m (2012).