Log in
Research into variable mechanical energy absorption, using Finite Element (FE) modelling and analysis, funded by Cellbond Ltd., led to a design specification for an Offset Deformable Barrier (ODB). Such barriers are used within the motor manufacturing industry to test vehicular safety. Based on the findings of our research, the barrier used in car crash tests has been redesigned. The design specification for the barrier has been adopted by the European New Car Assessment Programme (EuroNCAP). All newly designed cars are tested with this type of barrier before they enter production. The use of FE modelling and virtual crash testing allows barriers to be designed with particular properties and for the crash testing cycle to be shortened.
Research conducted at the University of Lincoln into advanced modelling of ship aerodynamics, integrated with helicopter flight simulation, has led to a design analysis technique which has influenced both the design of a specific ship and the guidance given to naval ship designers. It has been used by BAE Surface Ships in the design of the forthcoming Type 26 combat ship. This will be the first naval ship to be designed using a technique that has led to a superstructure configuration which seeks to reduce the impact of the ship airwake on the helicopter, thereby improving flight handling and pilot workload, and maximising the operational envelope of the helicopter and improving pilot safety. The research has also directly influenced the international ship design community through the NATO working group on Ship Design Guidance for Aircraft Operations (AVT-217).
The research has enabled industrial simulation users to investigate and develop larger scale systems faster and cheaper and thus to explore a wider variety of cost-saving options with more precision, and industrial simulation providers to offer new high-performance simulation (HPS) products and services. As a direct result of this work: Ford has made £150,000 cost savings in consultancy and significant process improvements to engine manufacture globally; Saker Solutions (UK SME) has created the first ever HPS system for production and logistics; Sellafield PLC has used this system to make significant process improvements and savings in the management of nuclear waste reprocessing of around £200,000 per year; and Whole Systems Partnership (a UK SME) used a spin-off from this research to generate a £200,000 per year revenue stream from interoperable healthcare decision support systems. Globally, several other companies are adopting the standardisation efforts and other outcomes of the research as the foundation for future innovation.
Research on the theoretical and experimental assessment of the stability of damaged ships in the Department of Naval Architecture and Marine Engineering from the mid-1990s to the present day has been pivotal in the development, adoption and implementation of the latest amendment of the International Convention on Safety of Life At Sea (SOLAS 2009) by the International Maritime Organization (IMO), the UN body regulating maritime safety. The impact of these regulations has been a significant reduction in the risk to human life at sea by enabling ship design and operation with higher standards of damage stability. SOLAS 2009 represents a step change from deterministic to probabilistic rules and from rule compliance to goal-based standards; it has improved design and operation of all commercial ships built worldwide from 2009, and has thus resulted in far-reaching and long-lasting impact on maritime safety.
Using powertrain system models arising from QUB research Wrightbus Ltd developed an advanced eco-friendly hybrid diesel-electric bus which won the New Bus for London contract worth £230M supplying 600 buses to Transport for London (commencing August 2012).
Demonstrating highly significant economic and environmental impacts the bus has twice the fuel economy of a standard diesel and emits less than half the CO2 and NOx. The full fleet reduces annual CO2 emissions in London by 230,000 tonnes, improving air quality and reducing greenhouse gases.
The company continues to develop the technology in new hybrid vehicles reaching worldwide, including USA, Hong Kong, Singapore and China.
Fluid modelling approaches devised by the Materials and Engineering Research Institute's (MERI's) materials and fluid flow modelling group have impacted on industrial partners, research professionals and outreach recipients. This case study focuses on economic impacts arising from improved understanding which this modelling work has given of commercial products and processes. These include: metal particulate decontamination methods developed by the UK small company Fluid Maintenance Solutions; liquid crystal devices (LCDs) manufactured by the UK SME ZBD Displays; and an ink-droplet dispenser module originally invented at the multinational Kodak. Additionally, the modelling group's computer simulation algorithms have been adopted by industrial research professionals and made available via STFC Daresbury's internationally distributed software package DL_MESO. Finally, the group has developed, presented and disseminated simulation-based materials and visualisations at major public understanding of science (PUS) events.
The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.
Die Casting is one of the most widely used production processes for aluminium automotive components with examples including engine blocks and gear-box casings. Ryobi Ltd is the world's leading die casting manufacturer.
Researchers at QUB have developed a modified casting process with an optimised start-up procedure. Ryobi has implemented the new method across its entire UK facility's die casting machines resulting in total yearly savings of approximately £1,000,000, 742 GJ energy (enough to power 50 domestic homes) and nearly 60 tonnes of aluminium. This demonstrates clear economic and environmental benefits, which have further potential for global impact.
As a direct result of University of Glasgow research, there have been no deaths in a gyroplane accident in the UK since 2009. Previously, gyroplanes (also known as autogyros) had a questionable safety record. Following fifteen years of comprehensive studies, researchers recommended innovative new design standards to the Civil Aviation Authority. These recommendations led to the introduction of new civil airworthiness requirements in the UK, subsequently adopted by Australia and Canada. The implementation of these revised regulations has forced gyroplane manufacturers to change their designs. Close to 2000 machines have been produced since this design change, revolutionising gyroplane safety worldwide.
Dr Richard Brooks and his team at the University of Nottingham have been investigating the high strain rate behaviour of composite materials since 2003. This has led to the development of two products that are being installed in streets in the UK and Ireland by East Midlands SME Frangible Safety Posts Ltd. The direct benefits to the company have been: the installation of 900 products in the UK and Ireland; saving of £17k capital cost and 2 months in terms of time to market per product developed and; raising of £1.8M investment to bring the products to market At least one life has already been saved in the Shetland Islands as a direct consequence of the product behaving in the way it was designed to.