Research Subject Area: Aerospace Engineering

REF impact found 25 Case Studies

Currently displayed text from case study:

Building acoustics - contributions to European and International Standardisation

Summary of the impact

The impact of building acoustics research by the Acoustics Research Unit at Liverpool has been through knowledge transfer into Standardisation, guidance to industry and take-up by test laboratories. This is evidenced by the active and leading participation of Professor Gibbs and Dr Hopkins on International and European Standards committees, developing measurement and prediction methods for noise in buildings. The research provides the scientific basis of new test codes used by accredited test laboratories and acoustic consultants. It is also feeding into new test procedures developed by R&D teams of Boeing, Seattle, for the control of vibration-induced noise in aircraft.

Submitting Institution

University of Liverpool

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering
Built Environment and Design: Building

Changing the way the European space industry verifies the safety of complex systems

Summary of the impact

The difficulty of certifying the safety (often termed Verification and Validation — V&V) of increasingly complex and more autonomous Guidance, Navigation and Control (GNC) systems is now widely accepted to be a serious threat to the success of future space missions. In response to this threat, the European Space Agency has funded Dr Prathyush P Menon and his team to develop a suite of mathematical tools for the V&V of advanced GNC systems. These tools have now been widely adopted throughout the European Space industry, and have been successfully applied by major companies such as Astrium, Thales-Alenia and GMV to systems ranging from flexible and autonomous satellites, to launch vehicles and hypersonic re-entry vehicles.

Submitting Institution

University of Exeter

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering
Economics: Applied Economics

Designing Novel Fire Safe Materials: FIRESAFE

Summary of the impact

The use of fire retardants is a requirement to reduce fire severity and deaths but is also controversial due to environmental (leaching) and health consequences of commonly used halogenated fire retardants. A novel methodology has been developed and validated in the Fire Safety Engineering Research and Technology centre (FireSERT), Built Environment Research Institute, for the prediction of large-scale burning behaviour of fire retarded polymers by combining small-scale (mg size) experiments with computer simulations of fire growth and toxicity. The research has been instrumental for companies in redesigning their products (fire doors and intumescent coatings) and is informing the development of EU regulations regarding the use and replacement of halogenated fire retardants. The research output has been published in leading journals, cited widely internationally and referenced by key organisations.

Submitting Institution

University of Ulster

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Expertise in automotive braking systems helps vehicle and brake manufacturers to improve their desings, to increase custormer satisfaction and sales, and reduce costs

Summary of the impact

Research at the University of Bradford has enabled many major vehicle and brake manufacturers to improve the design of their brakes and braking systems to increase customer satisfaction and sales, and reduce costs. Methods have been developed to predict the thermo-mechanical and dynamic performance of brakes and provide design improvements. Durable solutions have been developed for noisy brakes, which have reduced warranty costs for approximately ten international collaborating companies including Bentley, where a squeal noise from the front brakes of a new vehicle had prevented it from being released for production. Our research has been embedded into short courses, which have trained over 250 engineers since 2008 and is incorporated into Jaguar Land Rover's (JLR) professional training.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering

18. Improving survivability of protective structures through novel design and modelling

Summary of the impact

The vulnerability of both military and civilian infrastructure to the threat of terrorist activity has highlighted the need to improve its survivability, and this poses a significant design challenge to engineers. Research work at Imperial has led to the development of novel constitutive relationships for polymeric materials coupled to novel analysis procedures; software algorithms for effective simulations of blast and impact events; and enhanced experimental testing methods allowing a fundamental understanding of the structures. According to Dstl, this body of research has `unquestionably improved the security and effectiveness of the UK armed forces operating in hostile environments abroad as well as the safety of citizens using metropolitan infrastructure within the UK'. The techniques have been applied to vehicles and UK infrastructure, including for high profile events, such as the 2012 Olympics.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

International commercial impact from the creation of the spin-out company Magnomatics Ltd.

Summary of the impact

Research in the Department of Electronic & Electrical Engineering at the University of Sheffield has generated economic impact through the creation of a spinout company, Magnomatics Ltd, commercialising high performance electric drives, in particular those employing magnetic gearing technologies. Magnomatics employs 35 full-time staff, had a turnover of £1.4M for the year 2012, and its technologies are now being developed for applications in utility scale wind turbines, hybrid vehicles and marine propulsion.

Submitting Institution

University of Sheffield

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Economic

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Aerospace Engineering, Electrical and Electronic Engineering

16. Introduction of stone deflector in the design of the Airbus A400M Aircraft

Summary of the impact

Runway stones thrown up by aircraft undercarriage wheels can cause considerable damage to the aircraft structure. A model of runway debris lofting developed at Imperial College has been used for the new A400M military transport aircraft, which Airbus reported was `absolutely needed' during the successful development of a nose wheel debris deflector [5. A]. This deflector dramatically reduces the incidence and severity of the runway debris impacts and the associated maintenance costs and downtime of the new aircraft. Airbus has received 174 orders to date for the A400M. An indication of the cost savings comes from the Hercules C130K, the predecessor of the A400M, which incurred costs of up to £1M for each aircraft on active service in Afghanistan for the repair of runway debris damage. This cost is now eliminated for the Airbus A400M aircraft.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Interdisciplinary Engineering

Light-weighting of automotive and aerospace transport

Summary of the impact

The automotive and aerospace industries are keen to reduce their environmental impact and so have looked to move to lightweight materials. This creates issues in terms of joining, using and disposing of dissimilar materials. Oxford Brookes has therefore worked with national and multi-national companies in the adhesive, materials, automotive and aerospace industries to try to solve these problems. This has resulted in high quality research publications, innovative test equipment, improved numerical methods, novel designs, design guidelines, manufacturing procedures, British Standards, patents, commercial products and further funding. The impact of the work has global safety, environmental and economic benefits with multi-national aerospace and automotive companies implementing the results in current developments.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Metamaterial systems and routing of elastic waves in engineered structures

Summary of the impact

It is well-known that certain bridges are susceptible to potentially dangerous uncontrolled vibrations; recent examples include London's Millennium Bridge and the Volga Bridge in Volgograd. Correcting such problems after the construction of the bridge can be extremely expensive and time-consuming. Research in the Department of Mathematical Sciences at the University of Liverpool has led to a novel approach for predicting such behaviour in advance and then modifying the bridge design so as to avoid it. During the period 2011-12 this research has been incorporated into standard design procedures by industrial companies involved in bridge design. There is an economic impact for the companies concerned (avoiding costly repairs after bridge construction) and a societal impact (improvements in public safety and also avoiding the inconvenience of long-term closure of crucial transport links).

The research is based on a novel, highly non-trivial approach that has been developed to study properties of elastic waves in complex engineered structures with a multi-scale pattern. The work has been taken up by the industrial construction company ICOSTRADE S.R.L. Italy, whose design engineer Dr Gian Felice Giaccu integrated the innovative research ideas into their standard design procedures for complex structures such as multiply supported bridges. Novel designs of wave by- pass systems developed by the Liverpool group have also been embedded in standard algorithms by the industrial software company ENGINSOFT, in the framework of a project led by their project manager Mr. Giovanni Borzi.

Submitting Institution

University of Liverpool

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering
Medical and Health Sciences: Neurosciences

Space instrumentation: An exemplar of academic-industry partnership

Summary of the impact

The Planetary and Space Sciences (PSS) research group at The Open University has designed, built and deployed space flight instrumentation that is at the core of several iconic ESA (European Space Agency) missions. Following on from that work, the OU team has led and supported UK academia-industry consortia tendering to undertake ESA funded projects preparing for future missions. The work undertaken by these consortia has influenced ESA policy and practice, and helped enterprises in the UK Space Sector to attract significant funding, win contracts to supply ESA with goods and services, and move into new areas of business.

Submitting Institution

Open University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Earth Sciences: Geochemistry
Engineering: Aerospace Engineering

Filter Impact Case Studies

Download Impact Case Studies